Calculus A for Economics

Solutions to Exercise Number 4

1) Use the Sandwich Theorem. We have $\lim _{x \rightarrow 0}|x|=0$ and $\lim _{x \rightarrow 0}(-|x|)=0$. Hence by the Sandwich Theorem $\lim _{x \rightarrow 0} f(x)=0$.
2) Use the Sandwich Theorem. For all $x \neq 0$, the condition $\frac{|f(x)|}{|x|} \leq 1$ is equivalent to $|f(x)| \leq|x|$ which is equivalent to $-|x| \leq f(x) \leq|x|$. Since $\lim _{x \rightarrow 0}(-|x|)=\lim _{x \rightarrow 0}|x|=0$ it follows from the Sandwich Theorem that $\lim _{x \rightarrow 0} f(x)=0$.
3) $|\sqrt{x}-\sqrt{c}|=\left|\frac{(\sqrt{x}-\sqrt{c})(\sqrt{x}+\sqrt{c})}{\sqrt{x}+\sqrt{c}}\right|=\frac{|x-c|}{|\sqrt{x}+\sqrt{c}|}$. Since \sqrt{x} and \sqrt{c} are both positive we may drop the absolute value and get $\frac{|x-c|}{\sqrt{x}+\sqrt{c} \mid}=\frac{|x-c|}{\sqrt{x}+\sqrt{c}}<\frac{|x-c|}{\sqrt{c}}$ where the last inequality follows from the fact that $\sqrt{x}+\sqrt{c}>\sqrt{c}$, and hence $\frac{1}{\sqrt{x}+\sqrt{c}}<\frac{1}{\sqrt{c}}$. Therefore we proved that $|\sqrt{x}-\sqrt{c}|<\frac{|x-c|}{\sqrt{c}}$. Given ϵ choose $\delta=\sqrt{c} \epsilon$. In this case, if $|x-c|<\delta=\sqrt{c} \epsilon$, then $|\sqrt{x}-\sqrt{c}|<\frac{|x-c|}{\sqrt{c}}<\epsilon$.
4) a) $\lim _{x \rightarrow 1^{+}} g(x)=\lim _{x \rightarrow 1^{+}} x^{2}=1$.
b) $\lim _{x \rightarrow 2^{-}} g(x)=\lim _{x \rightarrow 2^{-}} x=2$.
c) To compute the limit at four, we consider the two one sided limits. First $\lim _{x \rightarrow 4^{-}} g(x)=$ $\lim _{x \rightarrow 4^{-}} x=4$. The other one is $\lim _{x \rightarrow 4^{+}} g(x)=\lim _{x \rightarrow 4^{+}}(4-x)=0$. Since they are not equal there is no limit at the point four.
5) a) $\lim _{x \rightarrow 2^{+}} \frac{x^{2}}{x+2}=\frac{2^{2}}{2+2}=1$.
b) This limit does not exist. The function \sqrt{x} is defined only for $x \geq 0$. Hence there is no sense in computing the limit from the left at zero.
c) We have

$$
\sqrt{|x|-x}=\left\{\begin{array}{ll}
\sqrt{x-x}, & x \geq 0 \\
\sqrt{-x-x}, & x<0
\end{array}= \begin{cases}0, & x \geq 0 \\
\sqrt{-2 x}, & x<0\end{cases}\right.
$$

From this we get $\lim _{x \rightarrow 1^{-}} \sqrt{|x|-x}=\lim _{x \rightarrow 1^{-}} 0=0$.
6) a) $\lim _{x \rightarrow \infty}(\sqrt{x+a}-\sqrt{x})=\lim _{x \rightarrow \infty} \frac{(\sqrt{x+a}-\sqrt{x})(\sqrt{x+a}+\sqrt{x})}{\sqrt{x+a}+\sqrt{x}}$. This last limit is equal to $\lim _{x \rightarrow \infty} \frac{x+a-x}{\sqrt{x+a}+\sqrt{x}}=a \lim _{x \rightarrow \infty} \frac{1}{\sqrt{x+a}+\sqrt{x}}=0$. The last equality follows from the following. Suppose that there is a positive number M such that $f(x)>M(f(x)<-M)$ when $x \rightarrow \infty$
$(x \rightarrow-\infty)$. Then $\lim _{x \rightarrow \infty} \frac{1}{f(x)}=0\left(\lim _{x \rightarrow-\infty} \frac{1}{f(x)}=0\right)$. Directly, this can be seen as follows. We have $\lim _{x \rightarrow \infty} \frac{1}{\sqrt{x+a}+\sqrt{x}}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{x}\left(\sqrt{1+\frac{a}{x}}+1\right)}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{x}} \lim _{x \rightarrow \infty} \frac{1}{\left(\sqrt{1+\frac{a}{x}}+1\right)}$. The first limit in this product is zero whereas the second one is one. Hence the value of the limit is zero.
b) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-x\right)=\lim _{x \rightarrow \infty} \frac{\left(\sqrt{x^{2}+1}-x\right)\left(\sqrt{x^{2}+1}+x\right)}{\sqrt{x^{2}+1}+x}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{x^{2}+1}+x}$. This is equal to $\lim _{x \rightarrow \infty} \frac{1}{x\left(\sqrt{1+\frac{1}{x^{2}}}+1\right)}=0$.
c) The limit $\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+1}-x\right)$ does not exist. Indeed, when $x \rightarrow-\infty$ then $\sqrt{x^{2}+1}-x$ is greater than any positive number M. One may try to proceed as in part \mathbf{b}), but this will not work. Indeed, we obtain in this case $\lim _{x \rightarrow \infty} \frac{1}{x\left(-\sqrt{1+\frac{1}{x^{2}}}+1\right)}=\lim _{x \rightarrow \infty} \frac{1}{x} \lim _{x \rightarrow \infty} \frac{1}{1-\sqrt{1+\frac{1}{x^{2}}}}$. The first limit in this product is zero, but the second limit does not exist, so we cant say much.
d) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-2 x-1}-\sqrt{x^{2}-7 x+3}\right)=\lim _{x \rightarrow \infty} \frac{\left(\sqrt{x^{2}-2 x-1}-\sqrt{x^{2}-7 x+3}\right)\left(\sqrt{x^{2}-2 x-1}+\sqrt{x^{2}-7 x+3}\right)}{\sqrt{x^{2}-2 x-1}+\sqrt{x^{2}-7 x+3}}$
$=\lim _{x \rightarrow \infty} \frac{5 x-4}{\sqrt{x^{2}-2 x-1}+\sqrt{x^{2}-7 x+3}}=\lim _{x \rightarrow \infty} \frac{x\left(5-\frac{4}{x}\right)}{x \sqrt{1-\frac{2}{x}-\frac{1}{x^{2}}}+x \sqrt{1-\frac{7}{x}+\frac{3}{x^{2}}}}=$
$=\lim _{x \rightarrow \infty} \frac{5-\frac{4}{x}}{\sqrt{1-\frac{2}{x}-\frac{1}{x^{2}}}+\sqrt{1-\frac{7}{x}+\frac{3}{x^{2}}}}=\frac{5}{1+1}=\frac{5}{2}$
e)

$$
\lim _{x \rightarrow \infty} \frac{1+x-3 x^{3}}{1+x^{2}+3 x^{3}}=\lim _{x \rightarrow \infty} \frac{x^{3}\left(\frac{1}{x^{3}}+\frac{1}{x^{2}}-3\right)}{x^{3}\left(\frac{1}{x^{3}}+\frac{1}{x}+3\right)}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{3}}+\frac{1}{x^{2}}-3}{\frac{1}{x^{3}}+\frac{1}{x}+3}=\frac{0+0-3}{0+0+3}=-1
$$

f) $\lim _{x \rightarrow \infty}\left(\frac{x^{3}}{x^{2}+1}-x\right)=\lim _{x \rightarrow \infty} \frac{x^{3}-x\left(1+x^{2}\right)}{1+x^{2}}=\lim _{x \rightarrow \infty} \frac{-x}{1+x^{2}}=\lim _{x \rightarrow \infty} \frac{x^{2}\left(\frac{-x}{x^{2}}\right)}{x^{2}\left(\frac{1}{x^{2}}+1\right)}=$ $\lim _{x \rightarrow \infty} \frac{-\frac{1}{x}}{\left(\frac{1}{x^{2}}+1\right)}=\frac{0}{0+1}=0$.
g) $\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+1}-1}{\sqrt{x^{2}+16}-4}=\lim _{x \rightarrow 0} \frac{\left(\sqrt{x^{2}+1}-1\right)\left(\sqrt{x^{2}+1}+1\right)\left(\sqrt{x^{2}+16}+4\right)}{\left(\sqrt{x^{2}+16}-4\right)\left(\sqrt{x^{2}+1}+1\right)\left(\sqrt{x^{2}+16}+4\right)}=\lim _{x \rightarrow 0} \frac{x^{2}\left(\sqrt{x^{2}+16}+4\right)}{x^{2}\left(\sqrt{x^{2}+1}+1\right)}=\frac{8}{2}=4$
h)

$$
\lim _{x \rightarrow \infty} \frac{x^{4}-5 x}{x^{2}-3 x+1}=\lim _{x \rightarrow \infty} \frac{x^{4}\left(1-\frac{5}{x^{3}}\right)}{x^{4}\left(\frac{1}{x^{2}}-\frac{3}{x^{3}}+\frac{1}{x^{4}}\right)}=\lim _{x \rightarrow \infty} \frac{1-\frac{5}{x^{3}}}{\frac{1}{x^{2}}-\frac{3}{x^{3}}+\frac{1}{x^{4}}}
$$

As $x \rightarrow \infty$ the top part tends to one, but the bottom part tends to zero. Hence the limit does not exist.
i)

$$
\lim _{x \rightarrow 1} \frac{(x-1) \sqrt{2-x}}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{(x-1) \sqrt{2-x}}{(x-1)(x+1)}=\lim _{x \rightarrow 1} \frac{\sqrt{2-x}}{x+1}=\frac{1}{2}
$$

j) We consider two cases. First, assume that $0<a<1$. In this case $\lim _{x \rightarrow \infty} a^{x}=0$. Hence $\lim _{x \rightarrow \infty} \frac{a^{x}}{a^{x}+1}=\frac{0}{0+1}=0$. If $a>1$ then $\lim _{x \rightarrow \infty} a^{-x}=0$ and hence $\lim _{x \rightarrow \infty} \frac{a^{x}}{a^{x}+1}=$ $\lim _{x \rightarrow \infty} \frac{a^{x}}{a^{x}\left(1+\frac{1}{a^{x}}\right)}=\lim _{x \rightarrow \infty} \frac{1}{1+a^{-x}}=\frac{1}{1+0}=1$.
k) Assume first that $0<a<1$. Then $\lim _{x \rightarrow \infty} \frac{a^{x}-a^{-x}}{a^{x}+a^{-x}}=\lim _{x \rightarrow \infty} \frac{a^{-x}\left(a^{2 x}-1\right)}{a^{-x}\left(a^{2 x}+1\right)}=\lim _{x \rightarrow \infty} \frac{a^{2 x}-1}{a^{2 x}+1}=$ $\frac{0-1}{0+1}=-1$. If $a>1$ then $\lim _{x \rightarrow \infty} \frac{a^{x}-a^{-x}}{a^{x}+a^{-x}}=\lim _{x \rightarrow \infty} \frac{a^{x}\left(1-a^{-2 x}\right)}{a^{x}\left(1+a^{-2 x}\right)}=\frac{1-0}{1+0}=1$.
7) The condition $-1 \leq f(x) \leq 1$ is equivalent to $0 \leq|f(x)| \leq 1$. Assuming that $x \neq 0$ we divide by $|x|$ and we get $0 \leq \frac{|f(x)|}{|x|} \leq \frac{1}{|x|}$. Since $\lim _{x \rightarrow \infty} \frac{1}{|x|}=0$, the result follows from the Sandwich Theorem.

